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• Example 

– Optimization Function:  Distance of 
the two farthest points 

– 1-Core-set: Points on the convex hull. 
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• Streaming Computation:  
– Processing sequence of 𝑛 data elements “on the fly” 
– limited Storage 

• 𝒄-Composable Core-set of size 𝒌 
– Chunks of size 𝑛𝑛 , thus number of chunks = 𝑛/𝑛  
– Core-set for each chunk 
– Total Space: 𝑛 𝑛/𝑛 + 𝑛𝑛 = 𝑂( 𝑛𝑛) 
– Approximation Factor: 𝑐 
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• Streaming Computation 
• Distributed System: 

– Each machine holds a block of data. 
– A composable core-set is computed and sent to the server 

• Map-Reduce Model:  
• One round of Map-Reduce 
• 𝑛/𝑛  mappers each getting 𝑛𝑛   points 
• Mapper computes a composable core-set of size 𝑛 
• Will be passed to a single reducer 
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Applications – Similarity Search 
• Streaming Computation 
• Distributed System 
• Similarity Search: Small output size 
• Good to have result from each 

cluster: relevant  and diverse  
• Diverse Near Neighbor Problem 

[Abbar, Amer-Yahia, Indyk, Mahabadi 
WWW’13] [Abbar, Amer-Yahia, Indyk, 
Mahabadi, Varadarajan, SoCG’13] 

– uses Locality Sensitive Hashing 
(LSH) and Composable Core-
sets techniques. 
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Diversity Maximization Problem 

• A set of 𝑛 points 𝑃 in metric space 
(Δ,𝑑𝑑𝑑𝑑) 

• Optimization Problem: 
– Find a subset of 𝑛 points 𝑆 which 

maximizes Diversity 
• Diversity:  

– Minimum pairwise distance 
(Remote Edge) 

– Sum of Pairwise distances (Remote 
Clique) 

• Long list of variants [Chandra and 
Halldorsson ‘01] 

k=4 
n = 6 



Diversity Functions 
 Diversity function over 

a set  𝑆 of 𝑛 point 
Description 

Remote-edge Minimum Pairwise Distance:     min
𝑜,𝑞∈𝑆

𝑑𝑑𝑑𝑑(𝑝, 𝑞) 

Remote-clique Sum of Pairwise Distances :  ∑ 𝑑𝑑𝑑𝑑(𝑝, 𝑞)𝑜,𝑞∈𝑆  

Remote-tree Weight of Minimum Spanning Tree (MST) of the set 𝑆 

Remote-cycle Weight of  minimum Traveling Salesman Tour (TSP) of the set 𝑆 

Remote-star Weight of minimum  star:   min
𝑜∈𝑆

∑ 𝑑𝑑𝑑𝑑(𝑝, 𝑞)𝑞∈𝑆  

Remote-Pseudoforest Sum of the distance of each point to its nearest neighbor 
∑ min

𝑞∈𝑆
𝑑𝑑𝑑𝑑(𝑝, 𝑞)𝑜∈𝑆  

Remote-Matching Weight of minimum perfect Matching of the set  𝑆 

Max-Coverage How well the points cover each coordinate 

�max
𝑜∈𝑆

𝑝𝑖

𝑑

𝑖=1

 



Our Results 
 Diversity function Offline ApproxFactor Composable Coreset 

Approx factor 
[Our Results] 

Remote-edge Minimum Pairwise Distance 𝑂(1) 
[Tmair 91][White 91] 

[Ravi et al 94] 

𝑶(𝟏) 

Remote-clique Sum of Pairwise Distances 𝑂(1)  
[Hassin et al 97] 

𝑶(𝟏) 
 

Remote-tree Weight of MST 𝑂(1) 
[Halldorsson et al 99] 

𝑶(𝟏) 
 

Remote-cycle Weight of  minimum TSP 𝑂(1) 
[Halldorsson et al 99] 

𝑶(𝟏) 
 

Remote-star Weight of minimum  star 𝑂(1) 
[Chandra&Halldorsson 01] 

𝑶(𝟏) 
 

Remote-Pseudoforest Sum of the distance of each point to its 
nearest neighbor 

𝑂(log 𝑛) 
[Chandra&Halldorsson 01] 

𝑶(𝐥𝐥𝐥 𝒌) 
 

Remote-Matching Weight of minimum perfect Matching 𝑂(log 𝑛) 
[Chandra&Halldorsson 01] 

𝑶(𝐥𝐥𝐥 𝒌) 
 

Max-Coverage How well the points cover each coordinate 

�max
𝑜∈𝑆

𝑝𝑖

𝑑

𝑖=1

 

𝑂(1) 
[Feige 98] 

No Composable 
Coreset of Poly size 
in 𝒌 with app. factor 

𝒌
𝒍𝒍𝒍 𝒌

 



Review of Offline Algorithms 

• We have a set of 𝑛 point 𝑃 
• Goal: find a subset 𝑆 of size 𝑛 which 

maximizes the diversity 
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Tayi] [Gonzales] 
– Choose an arbitrary point 
– Repeat  k-1  times 
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the currently chosen points is maximized 

 
• Remote-edge: computes a 2-

approximate set 
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Local Search Algorithm 
• Used for sum of pairwise distances 
• Algorithm [Abbasi, Mirrokni, Thakur] 

– Initialize 𝑆 with an arbitrary set of 
 𝑛 points which contains the two 
 farthest points 
– While there exists a swap that improves 

diversity by a factor of 1 + 𝜖
𝑛

 
» Perform the swap 

• For Remote-Clique 
– Number of rounds:  log 1+𝜖𝑛

𝑛2 = 𝑂(𝑛
𝜖

log 𝑛) 

– Approximation factor is constant. 



Composable Core-sets 

• Greedy Algorithm Computes a 3-composable core-set for 
minimum pairwise distance 
 

• Local Search Algorithm Computes a constant factor 
composable core-set for sum of pairwise distances. 
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• Theorem: for any 𝛼 < 𝑘
log 𝑘

 and any constant 𝛽 > 1, there is 
no 𝛼-composable core-set of size 𝑛𝛽 
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• Using 𝑛 sets everything in ∪ 𝑉𝑖 can be covered, 

that is 𝑂(𝑛3/2) elements. 
• Using core-sets only 𝑉1 + 𝑛 log 𝑛 = O(k log k ) 

can be covered 
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Conclusion 

• Applications of composable core-sets 
• We showed construction of composable core-sets for a 

wide range of diversity measures 
• We showed non existence of core-sets of polynomial 

size in 𝑛 for maximum coverage 
 
• Open Problems 

– Are there any other applications of composable core-sets? 
– Is there a general characterization of measures for which 

composable core-sets exist? 
– Better approximation factors? 



Thank You! 

Questions? 
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