
Composable Core-sets for
Diversity and Coverage

Maximization

Piotr Indyk (MIT)
Sepideh Mahabadi (MIT)

Mohammad Mahdian (Google)
Vahab S. Mirrokni (Google)

Core-Set Definition
• Setup

– Set of 𝑛 points 𝑷 in 𝑑-dimensional
space

– Optimize a function 𝑓

Core-Set Definition
• Setup

– Set of 𝑛 points 𝑷 in 𝑑-dimensional
space

– Optimize a function 𝑓

• 𝒄-Core-set: Small subset of points S ⊂ 𝑃
which suffices to 𝑐-approximate the optimal
solution

• Maximization:
𝑓𝑜𝑜𝑜 𝑃

𝑐
≤ 𝑓𝑜𝑜𝑜 𝑆 ≤ 𝑓𝑜𝑜𝑜(𝑃)

Core-Set Definition
• Setup

– Set of 𝑛 points 𝑷 in 𝑑-dimensional
space

– Optimize a function 𝑓

• 𝒄-Core-set: Small subset of points S ⊂ 𝑃
which suffices to 𝑐-approximate the optimal
solution

• Maximization:
𝑓𝑜𝑜𝑜 𝑃

𝑐
≤ 𝑓𝑜𝑜𝑜 𝑆 ≤ 𝑓𝑜𝑜𝑜(𝑃)

• Example

– Optimization Function: Distance of
the two farthest points

Core-Set Definition
• Setup

– Set of 𝑛 points 𝑷 in 𝑑-dimensional
space

– Optimize a function 𝑓

• 𝒄-Core-set: Small subset of points S ⊂ 𝑃
which suffices to 𝑐-approximate the optimal
solution

• Maximization:
𝑓𝑜𝑜𝑜 𝑃

𝑐
≤ 𝑓𝑜𝑜𝑜 𝑆 ≤ 𝑓𝑜𝑜𝑜(𝑃)

• Example

– Optimization Function: Distance of
the two farthest points

– 1-Core-set: Points on the convex hull.

Composable Core-sets
• Setup

– 𝑷𝟏,𝑷𝟐, … ,𝑷𝒎 are set of points in
 𝑑-dimensional space
– Optimize a function 𝑓 over their
 union 𝑷.

Composable Core-sets
• Setup

– 𝑷𝟏,𝑷𝟐, … ,𝑷𝒎 are set of points in
 𝑑-dimensional space
– Optimize a function 𝑓 over their
 union 𝑷.

• 𝒄-Composable Core-sets: Subsets of
 points S1 ⊂ 𝑃1, S2 ⊂ 𝑃2, … , Sm ⊂ 𝑃𝑚
 points such that the solution of the union
 of the core-sets approximates the solution
 of the point sets.

• Maximization :
1
𝑐
𝑓𝑜𝑜𝑜 𝑃1 ∪ ⋯∪ 𝑃𝑚 ≤ 𝑓opt S1 ∪ ⋯∪ 𝑆𝑚 ≤ 𝑓𝑜𝑜𝑜(𝑃1 ∪⋯∪ 𝑃𝑚)

Composable Core-sets
• Setup

– 𝑷𝟏,𝑷𝟐, … ,𝑷𝒎 are set of points in
 𝑑-dimensional space
– Optimize a function 𝑓 over their
 union 𝑷.

• 𝒄-Composable Core-sets: Subsets of
 points S1 ⊂ 𝑃1, S2 ⊂ 𝑃2, … , Sm ⊂ 𝑃𝑚
 points such that the solution of the union
 of the core-sets approximates the solution
 of the point sets.

• Maximization :
1
𝑐
𝑓𝑜𝑜𝑜 𝑃1 ∪ ⋯∪ 𝑃𝑚 ≤ 𝑓opt S1 ∪ ⋯∪ 𝑆𝑚 ≤ 𝑓𝑜𝑜𝑜(𝑃1 ∪⋯∪ 𝑃𝑚)

• Example: two farthest points

Composable Core-sets
• Setup

– 𝑷𝟏,𝑷𝟐, … ,𝑷𝒎 are set of points in
 𝑑-dimensional space
– Optimize a function 𝑓 over their
 union 𝑷.

• 𝒄-Composable Core-sets: Subsets of
 points S1 ⊂ 𝑃1, S2 ⊂ 𝑃2, … , Sm ⊂ 𝑃𝑚
 points such that the solution of the union
 of the core-sets approximates the solution
 of the point sets.

• Maximization :
1
𝑐
𝑓𝑜𝑜𝑜 𝑃1 ∪ ⋯∪ 𝑃𝑚 ≤ 𝑓opt S1 ∪ ⋯∪ 𝑆𝑚 ≤ 𝑓𝑜𝑜𝑜(𝑃1 ∪⋯∪ 𝑃𝑚)

• Example: two farthest points

Composable Core-sets
• Setup

– 𝑷𝟏,𝑷𝟐, … ,𝑷𝒎 are set of points in
 𝑑-dimensional space
– Optimize a function 𝑓 over their
 union 𝑷.

• 𝒄-Composable Core-sets: Subsets of
 points S1 ⊂ 𝑃1, S2 ⊂ 𝑃2, … , Sm ⊂ 𝑃𝑚
 points such that the solution of the union
 of the core-sets approximates the solution
 of the point sets.

• Maximization :
1
𝑐
𝑓𝑜𝑜𝑜 𝑃1 ∪ ⋯∪ 𝑃𝑚 ≤ 𝑓opt S1 ∪ ⋯∪ 𝑆𝑚 ≤ 𝑓𝑜𝑜𝑜(𝑃1 ∪⋯∪ 𝑃𝑚)

• Example: two farthest points

Applications – Streaming Computation

• Streaming Computation:
– Processing sequence of 𝑛 data elements “on the fly”
– limited Storage

Applications – Streaming Computation

• Streaming Computation:
– Processing sequence of 𝑛 data elements “on the fly”
– limited Storage

• 𝒄-Composable Core-set of size 𝒌
– Chunks of size 𝑛𝑛 , thus number of chunks = 𝑛/𝑛

Applications – Streaming Computation

• Streaming Computation:
– Processing sequence of 𝑛 data elements “on the fly”
– limited Storage

• 𝒄-Composable Core-set of size 𝒌
– Chunks of size 𝑛𝑛 , thus number of chunks = 𝑛/𝑛
– Core-set for each chunk
– Total Space: 𝑛 𝑛/𝑛 + 𝑛𝑛 = 𝑂(𝑛𝑛)
– Approximation Factor: 𝑐

Applications – Distributed Systems
• Streaming Computation
• Distributed System:

– Each machine holds a block of data.
– A composable core-set is computed and sent to the server

Applications – Distributed Systems
• Streaming Computation
• Distributed System:

– Each machine holds a block of data.
– A composable core-set is computed and sent to the server

• Map-Reduce Model:
• One round of Map-Reduce
• 𝑛/𝑛 mappers each getting 𝑛𝑛 points
• Mapper computes a composable core-set of size 𝑛
• Will be passed to a single reducer

Applications – Similarity Search
• Streaming Computation
• Distributed System
• Similarity Search: Small output size

Applications – Similarity Search
• Streaming Computation
• Distributed System
• Similarity Search: Small output size
• Good to have result from each

cluster: relevant and diverse

Applications – Similarity Search
• Streaming Computation
• Distributed System
• Similarity Search: Small output size
• Good to have result from each

cluster: relevant and diverse
• Diverse Near Neighbor Problem

[Abbar, Amer-Yahia, Indyk, Mahabadi
WWW’13] [Abbar, Amer-Yahia, Indyk,
Mahabadi, Varadarajan, SoCG’13]

Applications – Similarity Search
• Streaming Computation
• Distributed System
• Similarity Search: Small output size
• Good to have result from each

cluster: relevant and diverse
• Diverse Near Neighbor Problem

[Abbar, Amer-Yahia, Indyk, Mahabadi
WWW’13] [Abbar, Amer-Yahia, Indyk,
Mahabadi, Varadarajan, SoCG’13]

– uses Locality Sensitive Hashing
(LSH) and Composable Core-
sets techniques.

Diversity Maximization Problem

• A set of 𝑛 points 𝑃 in metric space
(Δ,𝑑𝑑𝑑𝑑)

• Optimization Problem:
– Find a subset of 𝑛 points 𝑆 which

maximizes Diversity

k=4
n = 6

Diversity Maximization Problem

• A set of 𝑛 points 𝑃 in metric space
(Δ,𝑑𝑑𝑑𝑑)

• Optimization Problem:
– Find a subset of 𝑛 points 𝑆 which

maximizes Diversity
• Diversity:

– Minimum pairwise distance
(Remote Edge)

k=4
n = 6

Diversity Maximization Problem

• A set of 𝑛 points 𝑃 in metric space
(Δ,𝑑𝑑𝑑𝑑)

• Optimization Problem:
– Find a subset of 𝑛 points 𝑆 which

maximizes Diversity
• Diversity:

– Minimum pairwise distance
(Remote Edge)

– Sum of Pairwise distances (Remote
Clique) k=4

n = 6

Diversity Maximization Problem

• A set of 𝑛 points 𝑃 in metric space
(Δ,𝑑𝑑𝑑𝑑)

• Optimization Problem:
– Find a subset of 𝑛 points 𝑆 which

maximizes Diversity
• Diversity:

– Minimum pairwise distance
(Remote Edge)

– Sum of Pairwise distances (Remote
Clique)

• Long list of variants [Chandra and
Halldorsson ‘01]

k=4
n = 6

Diversity Functions
 Diversity function over

a set 𝑆 of 𝑛 point
Description

Remote-edge Minimum Pairwise Distance: min
𝑜,𝑞∈𝑆

𝑑𝑑𝑑𝑑(𝑝, 𝑞)

Remote-clique Sum of Pairwise Distances : ∑ 𝑑𝑑𝑑𝑑(𝑝, 𝑞)𝑜,𝑞∈𝑆

Remote-tree Weight of Minimum Spanning Tree (MST) of the set 𝑆

Remote-cycle Weight of minimum Traveling Salesman Tour (TSP) of the set 𝑆

Remote-star Weight of minimum star: min
𝑜∈𝑆

∑ 𝑑𝑑𝑑𝑑(𝑝, 𝑞)𝑞∈𝑆

Remote-Pseudoforest Sum of the distance of each point to its nearest neighbor
∑ min

𝑞∈𝑆
𝑑𝑑𝑑𝑑(𝑝, 𝑞)𝑜∈𝑆

Remote-Matching Weight of minimum perfect Matching of the set 𝑆

Max-Coverage How well the points cover each coordinate

�max
𝑜∈𝑆

𝑝𝑖

𝑑

𝑖=1

Our Results
 Diversity function Offline ApproxFactor Composable Coreset

Approx factor
[Our Results]

Remote-edge Minimum Pairwise Distance 𝑂(1)
[Tmair 91][White 91]

[Ravi et al 94]

𝑶(𝟏)

Remote-clique Sum of Pairwise Distances 𝑂(1)
[Hassin et al 97]

𝑶(𝟏)

Remote-tree Weight of MST 𝑂(1)
[Halldorsson et al 99]

𝑶(𝟏)

Remote-cycle Weight of minimum TSP 𝑂(1)
[Halldorsson et al 99]

𝑶(𝟏)

Remote-star Weight of minimum star 𝑂(1)
[Chandra&Halldorsson 01]

𝑶(𝟏)

Remote-Pseudoforest Sum of the distance of each point to its
nearest neighbor

𝑂(log 𝑛)
[Chandra&Halldorsson 01]

𝑶(𝐥𝐥𝐥 𝒌)

Remote-Matching Weight of minimum perfect Matching 𝑂(log 𝑛)
[Chandra&Halldorsson 01]

𝑶(𝐥𝐥𝐥 𝒌)

Max-Coverage How well the points cover each coordinate

�max
𝑜∈𝑆

𝑝𝑖

𝑑

𝑖=1

𝑂(1)
[Feige 98]

No Composable
Coreset of Poly size
in 𝒌 with app. factor

𝒌
𝒍𝒍𝒍 𝒌

Review of Offline Algorithms

• We have a set of 𝑛 point 𝑃
• Goal: find a subset 𝑆 of size 𝑛 which

maximizes the diversity

The Greedy Algorithm

• Used for minimum-pairwise distance

The Greedy Algorithm

• Used for minimum-pairwise distance
• Greedy Algorithm [Ravi, Rosenkrantz,

Tayi] [Gonzales]
– Choose an arbitrary point
– Repeat k-1 times

• Add the point whose minimum distance to
the currently chosen points is maximized

The Greedy Algorithm

• Used for minimum-pairwise distance
• Greedy Algorithm [Ravi, Rosenkrantz,

Tayi] [Gonzales]
– Choose an arbitrary point
– Repeat k-1 times

• Add the point whose minimum distance to
the currently chosen points is maximized

• Remote-edge: computes a 2-

approximate set

Local Search Algorithm
• Used for sum of pairwise distances

Local Search Algorithm
• Used for sum of pairwise distances
• Algorithm [Abbasi, Mirrokni, Thakur]

– Initialize 𝑆 with an arbitrary set of
 𝑛 points which contains the two
 farthest points

Local Search Algorithm
• Used for sum of pairwise distances
• Algorithm [Abbasi, Mirrokni, Thakur]

– Initialize 𝑆 with an arbitrary set of
 𝑛 points which contains the two
 farthest points
– While there exists a swap that improves

diversity by a factor of 1 + 𝜖
𝑛

Local Search Algorithm
• Used for sum of pairwise distances
• Algorithm [Abbasi, Mirrokni, Thakur]

– Initialize 𝑆 with an arbitrary set of
 𝑛 points which contains the two
 farthest points
– While there exists a swap that improves

diversity by a factor of 1 + 𝜖
𝑛

» Perform the swap

Local Search Algorithm
• Used for sum of pairwise distances
• Algorithm [Abbasi, Mirrokni, Thakur]

– Initialize 𝑆 with an arbitrary set of
 𝑛 points which contains the two
 farthest points
– While there exists a swap that improves

diversity by a factor of 1 + 𝜖
𝑛

» Perform the swap

Local Search Algorithm
• Used for sum of pairwise distances
• Algorithm [Abbasi, Mirrokni, Thakur]

– Initialize 𝑆 with an arbitrary set of
 𝑛 points which contains the two
 farthest points
– While there exists a swap that improves

diversity by a factor of 1 + 𝜖
𝑛

» Perform the swap

• For Remote-Clique
– Number of rounds: log 1+𝜖𝑛

𝑛2 = 𝑂(𝑛
𝜖

log 𝑛)

– Approximation factor is constant.

Composable Core-sets

• Greedy Algorithm Computes a 3-composable core-set for
minimum pairwise distance

• Local Search Algorithm Computes a constant factor
composable core-set for sum of pairwise distances.

Proof Idea
Let 𝑃1,⋯ ,𝑃𝑚 be the set of points , 𝑃 = ⋃𝑃𝑖

Proof Idea
Let 𝑃1,⋯ ,𝑃𝑚 be the set of points , 𝑃 = ⋃𝑃𝑖
𝑆1,⋯ , 𝑆𝑚 be their core-sets, S = ⋃𝑆𝑖 Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣𝑘(𝑃) / c

Proof Idea
Let 𝑃1,⋯ ,𝑃𝑚 be the set of points , 𝑃 = ⋃𝑃𝑖
𝑆1,⋯ , 𝑆𝑚 be their core-sets, S = ⋃𝑆𝑖 Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣𝑘(𝑃) / c

Proof Idea
Let 𝑃1,⋯ ,𝑃𝑚 be the set of points , 𝑃 = ⋃𝑃𝑖
𝑆1,⋯ , 𝑆𝑚 be their core-sets, S = ⋃𝑆𝑖 Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣𝑘(𝑃) / c
Let 𝑂𝑃𝑂 = 𝑜1,⋯ , 𝑜𝑘 be the optimal solution Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣(𝑂𝑃𝑂) / c

Proof Idea
Let 𝑃1,⋯ ,𝑃𝑚 be the set of points , 𝑃 = ⋃𝑃𝑖
𝑆1,⋯ , 𝑆𝑚 be their core-sets, S = ⋃𝑆𝑖 Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣𝑘(𝑃) / c
Let 𝑂𝑃𝑂 = 𝑜1,⋯ , 𝑜𝑘 be the optimal solution Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣(𝑂𝑃𝑂) / c

Proof Idea
Let 𝑃1,⋯ ,𝑃𝑚 be the set of points , 𝑃 = ⋃𝑃𝑖
𝑆1,⋯ , 𝑆𝑚 be their core-sets, S = ⋃𝑆𝑖 Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣𝑘(𝑃) / c
Let 𝑂𝑃𝑂 = 𝑜1,⋯ , 𝑜𝑘 be the optimal solution Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣(𝑂𝑃𝑂) / c
Let 𝑟 be their maximum diversity , 𝑟 = max

𝑖
 𝑑𝑑𝑣 𝑆𝑖 , Note: divk 𝑆 ≥ 𝑟

Proof Idea
Let 𝑃1,⋯ ,𝑃𝑚 be the set of points , 𝑃 = ⋃𝑃𝑖
𝑆1,⋯ , 𝑆𝑚 be their core-sets, S = ⋃𝑆𝑖 Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣𝑘(𝑃) / c
Let 𝑂𝑃𝑂 = 𝑜1,⋯ , 𝑜𝑘 be the optimal solution Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣(𝑂𝑃𝑂) / c
Let 𝑟 be their maximum diversity , 𝑟 = max

𝑖
 𝑑𝑑𝑣 𝑆𝑖 , Note: divk 𝑆 ≥ 𝑟

Case 1: one of 𝑆𝑖 has diversity as good as the optimum: 𝑟 ≥ 𝑶 𝑑𝑑𝑣 𝑂𝑃𝑂

Proof Idea
Let 𝑃1,⋯ ,𝑃𝑚 be the set of points , 𝑃 = ⋃𝑃𝑖
𝑆1,⋯ , 𝑆𝑚 be their core-sets, S = ⋃𝑆𝑖 Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣𝑘(𝑃) / c
Let 𝑂𝑃𝑂 = 𝑜1,⋯ , 𝑜𝑘 be the optimal solution Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣(𝑂𝑃𝑂) / c
Let 𝑟 be their maximum diversity , 𝑟 = max

𝑖
 𝑑𝑑𝑣 𝑆𝑖 , Note: divk 𝑆 ≥ 𝑟

Case 1: one of 𝑆𝑖 has diversity as good as the optimum: 𝑟 ≥ 𝑶 𝑑𝑑𝑣 𝑂𝑃𝑂
Case 2: : 𝑟 ≤ 𝑶(𝑑𝑑𝑣(𝑂𝑃𝑂))

Proof Idea
Let 𝑃1,⋯ ,𝑃𝑚 be the set of points , 𝑃 = ⋃𝑃𝑖
𝑆1,⋯ , 𝑆𝑚 be their core-sets, S = ⋃𝑆𝑖 Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣𝑘(𝑃) / c
Let 𝑂𝑃𝑂 = 𝑜1,⋯ , 𝑜𝑘 be the optimal solution Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣(𝑂𝑃𝑂) / c
Let 𝑟 be their maximum diversity , 𝑟 = max

𝑖
 𝑑𝑑𝑣 𝑆𝑖 , Note: divk 𝑆 ≥ 𝑟

Case 1: one of 𝑆𝑖 has diversity as good as the optimum: 𝑟 ≥ 𝑶 𝑑𝑑𝑣 𝑂𝑃𝑂
Case 2: : 𝑟 ≤ 𝑶(𝑑𝑑𝑣(𝑂𝑃𝑂))
• find a one-to-one mapping 𝜇 from 𝑂𝑃𝑂 = {𝑜1,⋯ , 𝑜𝑘} to 𝑆 = 𝑆1 ∪ ⋯∪ 𝑆𝑚 s.t.

𝑑𝑑𝑑𝑑 𝑜𝑖 ,𝜇 𝑜𝑖 ≤ 𝑶(𝑟)

Proof Idea
Let 𝑃1,⋯ ,𝑃𝑚 be the set of points , 𝑃 = ⋃𝑃𝑖
𝑆1,⋯ , 𝑆𝑚 be their core-sets, S = ⋃𝑆𝑖 Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣𝑘(𝑃) / c
Let 𝑂𝑃𝑂 = 𝑜1,⋯ , 𝑜𝑘 be the optimal solution Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣(𝑂𝑃𝑂) / c
Let 𝑟 be their maximum diversity , 𝑟 = max

𝑖
 𝑑𝑑𝑣 𝑆𝑖 , Note: divk 𝑆 ≥ 𝑟

Case 1: one of 𝑆𝑖 has diversity as good as the optimum: 𝑟 ≥ 𝑶 𝑑𝑑𝑣 𝑂𝑃𝑂
Case 2: : 𝑟 ≤ 𝑶(𝑑𝑑𝑣(𝑂𝑃𝑂))
• find a one-to-one mapping 𝜇 from 𝑂𝑃𝑂 = {𝑜1,⋯ , 𝑜𝑘} to 𝑆 = 𝑆1 ∪ ⋯∪ 𝑆𝑚 s.t.

𝑑𝑑𝑑𝑑 𝑜𝑖 ,𝜇 𝑜𝑖 ≤ 𝑶(𝑟)
• Replacing 𝑜𝑖 with 𝜇(𝑜𝑖) has still large diversity
• 𝑑𝑑𝑣 𝜇 𝑜𝑖 is approximately as good as 𝑑𝑑𝑣 𝑜𝑖

Proof Idea
Let 𝑃1,⋯ ,𝑃𝑚 be the set of points , 𝑃 = ⋃𝑃𝑖
𝑆1,⋯ , 𝑆𝑚 be their core-sets, S = ⋃𝑆𝑖 Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣𝑘(𝑃) / c
Let 𝑂𝑃𝑂 = 𝑜1,⋯ , 𝑜𝑘 be the optimal solution Goal: 𝑑𝑑𝑣𝑘 𝑆 ≥ 𝑑𝑑𝑣(𝑂𝑃𝑂) / c
Let 𝑟 be their maximum diversity , 𝑟 = max

𝑖
 𝑑𝑑𝑣 𝑆𝑖 , Note: divk 𝑆 ≥ 𝑟

Case 1: one of 𝑆𝑖 has diversity as good as the optimum: 𝑟 ≥ 𝑶 𝑑𝑑𝑣 𝑂𝑃𝑂
Case 2: : 𝑟 ≤ 𝑶(𝑑𝑑𝑣(𝑂𝑃𝑂))
• find a one-to-one mapping 𝜇 from 𝑂𝑃𝑂 = {𝑜1,⋯ , 𝑜𝑘} to 𝑆 = 𝑆1 ∪ ⋯∪ 𝑆𝑚 s.t.

𝑑𝑑𝑑𝑑 𝑜𝑖 ,𝜇 𝑜𝑖 ≤ 𝑶(𝑟)
• Replacing 𝑜𝑖 with 𝜇(𝑜𝑖) has still large diversity
• 𝑑𝑑𝑣 𝜇 𝑜𝑖 is approximately as good as 𝑑𝑑𝑣 𝑜𝑖
• The actual mapping 𝜇 depends on the specific diversity measure we are considering.

Maximum k-Coverage
• A set of 𝑛 points 𝑃 in 𝑑-dimensional space
• Each dimension corresponds to a feature.
• Goal: choose a set of 𝑛 points 𝑆 in 𝑃 which maximizes the total

coverage:
– cov S = ∑ max

𝑠∈𝑆
𝑑𝑖𝑑

𝑖=1

Maximum k-Coverage
• A set of 𝑛 points 𝑃 in 𝑑-dimensional space
• Each dimension corresponds to a feature.
• Goal: choose a set of 𝑛 points 𝑆 in 𝑃 which maximizes the total

coverage:
– cov S = ∑ max

𝑠∈𝑆
𝑑𝑖𝑑

𝑖=1

• Special Case hamming space:
• A collection of 𝑛 sets 𝑃
• Over the universe 𝑈 = 1, … ,𝑑
• Goal: choose 𝑛 sets 𝑆 = {𝑆1, … , 𝑆𝑘} in 𝑃 whose union is

maximized.

Maximum k-Coverage
• A set of 𝑛 points 𝑃 in 𝑑-dimensional space
• Each dimension corresponds to a feature.
• Goal: choose a set of 𝑛 points 𝑆 in 𝑃 which maximizes the total

coverage:
– cov S = ∑ max

𝑠∈𝑆
𝑑𝑖𝑑

𝑖=1

• Special Case hamming space:
• A collection of 𝑛 sets 𝑃
• Over the universe 𝑈 = 1, … ,𝑑
• Goal: choose 𝑛 sets 𝑆 = {𝑆1, … , 𝑆𝑘} in 𝑃 whose union is

maximized.

• Theorem: for any 𝛼 < 𝑘
log 𝑘

 and any constant 𝛽 > 1, there is
no 𝛼-composable core-set of size 𝑛𝛽

Proof Idea
Build a set of instances 𝑃1,⋯ ,𝑃𝑂 𝑘
 let 𝑈 = 1,⋯ ,𝑂 𝑛4

Proof Idea
Build a set of instances 𝑃1,⋯ ,𝑃𝑂 𝑘
 let 𝑈 = {1,⋯ ,𝑂 𝑛4 }
• Let 𝑉𝑖 be subset of size 𝑛 of 𝑈

Proof Idea
Build a set of instances 𝑃1,⋯ ,𝑃𝑂 𝑘
 let 𝑈 = {1,⋯ ,𝑂 𝑛4 }
• Let 𝑉𝑖 be subset of size 𝑛 of 𝑈
• 𝑃𝑖 is a collection of subsets of size
 𝑛 from 𝑉𝑖

Proof Idea
Build a set of instances 𝑃1,⋯ ,𝑃𝑂 𝑘
 let 𝑈 = {1,⋯ ,𝑂 𝑛4 }
• Let 𝑉𝑖 be subset of size 𝑛 of 𝑈
• 𝑃𝑖 is a collection of subsets of size
 𝑛 from 𝑉𝑖
• 𝑃𝑖 has cardinality 𝑘

𝑘

Proof Idea
Build a set of instances 𝑃1,⋯ ,𝑃𝑂 𝑘
 let 𝑈 = {1,⋯ ,𝑂 𝑛4 }
• Let 𝑉𝑖 be subset of size 𝑛 of 𝑈
• 𝑃𝑖 is a collection of subsets of size
 𝑛 from 𝑉𝑖
• 𝑃𝑖 has cardinality 𝑘

𝑘

We show there exists 𝑉1,⋯ ,𝑉𝑂 𝑘 such that
– 𝑉𝑖 ∖ 𝑉1 has size 𝑛
– 𝑉𝑖 ∖ 𝑉1 and 𝑉𝑗 ∖ 𝑉1 are disjoint for 𝑑 ≠ 𝑗

Proof Idea
Build a set of instances 𝑃1,⋯ ,𝑃𝑂 𝑘
 let 𝑈 = {1,⋯ ,𝑂 𝑛4 }
• Let 𝑉𝑖 be subset of size 𝑛 of 𝑈
• 𝑃𝑖 is a collection of subsets of size
 𝑛 from 𝑉𝑖
• 𝑃𝑖 has cardinality 𝑘

𝑘

We show there exists 𝑉1,⋯ ,𝑉𝑂 𝑘 such that
– 𝑉𝑖 ∖ 𝑉1 has size 𝑛
– 𝑉𝑖 ∖ 𝑉1 and 𝑉𝑗 ∖ 𝑉1 are disjoint for 𝑑 ≠ 𝑗

• Using 𝑛 sets everything in ∪ 𝑉𝑖 can be covered,

that is 𝑂(𝑛3/2) elements.

Proof Idea
Build a set of instances 𝑃1,⋯ ,𝑃𝑂 𝑘
 let 𝑈 = {1,⋯ ,𝑂 𝑛4 }
• Let 𝑉𝑖 be subset of size 𝑛 of 𝑈
• 𝑃𝑖 is a collection of subsets of size
 𝑛 from 𝑉𝑖
• 𝑃𝑖 has cardinality 𝑘

𝑘

We show there exists 𝑉1,⋯ ,𝑉𝑂 𝑘 such that
– 𝑉𝑖 ∖ 𝑉1 has size 𝑛
– 𝑉𝑖 ∖ 𝑉1 and 𝑉𝑗 ∖ 𝑉1 are disjoint for 𝑑 ≠ 𝑗

• Using 𝑛 sets everything in ∪ 𝑉𝑖 can be covered,

that is 𝑂(𝑛3/2) elements.
• Using core-sets only 𝑉1 + 𝑛 log 𝑛 = O(k log k)

can be covered

Conclusion

• Applications of composable core-sets

Conclusion

• Applications of composable core-sets
• We showed construction of composable core-sets for a

wide range of diversity measures

Conclusion

• Applications of composable core-sets
• We showed construction of composable core-sets for a

wide range of diversity measures
• We showed non existence of core-sets of polynomial

size in 𝑛 for maximum coverage

Conclusion

• Applications of composable core-sets
• We showed construction of composable core-sets for a

wide range of diversity measures
• We showed non existence of core-sets of polynomial

size in 𝑛 for maximum coverage

• Open Problems

– Are there any other applications of composable core-sets?

Conclusion

• Applications of composable core-sets
• We showed construction of composable core-sets for a

wide range of diversity measures
• We showed non existence of core-sets of polynomial

size in 𝑛 for maximum coverage

• Open Problems

– Are there any other applications of composable core-sets?
– Is there a general characterization of measures for which

composable core-sets exist?

Conclusion

• Applications of composable core-sets
• We showed construction of composable core-sets for a

wide range of diversity measures
• We showed non existence of core-sets of polynomial

size in 𝑛 for maximum coverage

• Open Problems

– Are there any other applications of composable core-sets?
– Is there a general characterization of measures for which

composable core-sets exist?
– Better approximation factors?

Thank You!

Questions?

	Composable Core-sets for Diversity and Coverage Maximization�
	Core-Set Definition
	Core-Set Definition
	Core-Set Definition
	Core-Set Definition
	Composable Core-sets
	Composable Core-sets
	Composable Core-sets
	Composable Core-sets
	Composable Core-sets
	Applications – Streaming Computation
	Applications – Streaming Computation
	Applications – Streaming Computation
	Applications – Distributed Systems
	Applications – Distributed Systems
	Applications – Similarity Search
	Applications – Similarity Search
	Applications – Similarity Search
	Applications – Similarity Search
	Diversity Maximization Problem
	Diversity Maximization Problem
	Diversity Maximization Problem
	Diversity Maximization Problem
	Diversity Functions
	Our Results
	Review of Offline Algorithms
	The Greedy Algorithm
	The Greedy Algorithm
	The Greedy Algorithm
	Local Search Algorithm
	Local Search Algorithm
	Local Search Algorithm
	Local Search Algorithm
	Local Search Algorithm
	Local Search Algorithm
	Composable Core-sets
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Maximum k-Coverage
	Maximum k-Coverage
	Maximum k-Coverage
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Proof Idea
	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Conclusion
	Thank You!

