Composable Core-sets for
Diversity and Coverage
Maximization

Piotr Indyk (MIT)
Sepideh Mahabadi (MIT)
Mohammad Mahdian (Google)
Vahab S. Mirrokni (Google)



Core-Set Definition

e Setup

— Set of n points P in d-dimensional
space

—  Optimize a function f




Core-Set Definition

e Setup
— Set of n points P in d-dimensional
space
—  Optimize a function f

e c-Core-set: Small subset of pointsS c P
which suffices to c-approximate the optimal
solution

... Jopt(P)
*  Maximization: < fopt(S) < fopt(P)

Cc




Core-Set Definition

Setup

— Set of n points P in d-dimensional
space

—  Optimize a function f

c-Core-set: Small subset of pointsS c P
which suffices to c-approximate the optimal
solution

fopt(P)

Cc

Maximization: < fopt(S) < fopt(P)

Example ®

— Optimization Function: Distance of
the two farthest points



Core-Set Definition

Setup

— Set of n points P in d-dimensional
space

—  Optimize a function f

c-Core-set: Small subset of pointsS c P
which suffices to c-approximate the optimal
solution

fopt(P)

Cc

Maximization: < fopt(S) < fopt(P)

Example

— Optimization Function: Distance of
the two farthest points

— 1-Core-set: Points on the convex hull.
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Applications — Streaming Computation

e Streaming Computation:
— Processing sequence of n data elements “on the fly”
— limited Storage

e c-Composable Core-set of size k

—  Chunks of size Vnk , thus number of chunks = \/n/k
— Core-set for each chunk

— Total Space: k\/n/k + Vnk = 0(\nk)

— Approximation Factor: ¢
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Applications — Distributed Systems

e Streaming Computation

e Distributed System:
— Each machine holds a block of data.
— A composable core-set is computed and sent to the server

e Map-Reduce Model:

e  One round of Map-Reduce

e /n/k mappers each getting Vvnk points
e  Mapper computes a composable core-set of size k
e  Will be passed to a single reducer

M

coreset

coreset

Reducer }=>Solution

coreset




Applications — Similarity Search

e Streaming Computation Qg2
e Distributed System
* Similarity Search: Small output size  »escsieess
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Applications — Similarity Search

Streaming Computation
Distributed System
Similarity Search: Small output size

Good to have result from each
cluster: relevant and diverse

Diverse Near Neighbor Problem

[Abbar, Amer-Yahia, Indyk, Mahabadi
WWW’13] [Abbar, Amer-Yahia, Indyk,
Mahabadi, Varadarajan, SoCG’13]
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Applications — Similarity Search

e Streaming Computation
e Distributed System
e Similarity Search: Small output size

. Good to have result from each
cluster: relevant and diverse

e Diverse Near Neighbor Problem
[Abbar, Amer-Yahia, Indyk, Mahabadi

WWW’13] [Abbar, Amer-Yahia, Indyk,

Mahabadi, Varadarajan, SoCG’13]

— uses Locality Sensitive Hashing
(LSH) and Composable Core-
sets techniques.
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Diversity Maximization Problem

A set of n points P in metric space
(A, dist)
Optimization Problem:

— Find a subset of k points S which
maximizes Diversity

Diversity:

— Minimum pairwise distance
(Remote Edge)

— Sum of Pairwise distances (Remote
Clique)

Long list of variants [Chandra and
Halldorsson ‘01]



Diversity Functions

Diversity function over Description

a set S of k point

Remote-edge Minimum Pairwise Distance: {g}lier}g} dist(p,q)
Remote-clique Sum of Pairwise Distances : X.q, ;53 dist(p, q)

Remote-tree Weight of Minimum Spanning Tree (MST) of the set S
Remote-cycle Weight of minimum Traveling Salesman Tour (TSP) of the set S
Remote-star Weight of minimum star: {rglei?}z{qes} dist(p,q)
Remote-Pseudoforest Sum of the distance of each point to its nearest neighbor

2ipes) {Igllei?} dist(p, q)

Remote-Matching Weight of minimum perfect Matching of the set S

Max-Coverage How well the points cover each coordinate

d

max p;
Z pES Pi
i=1



Diversity function

Our Results

Offline ApproxFactor Composable Coreset
Approx factor

[Our Results]

Remote-edge

Remote-clique

Remote-tree

Remote-cycle

Remote-star

Remote-Pseudoforest

Remote-Matching

Max-Coverage

Minimum Pairwise Distance

Sum of Pairwise Distances
Weight of MST
Weight of minimum TSP

Weight of minimum star

Sum of the distance of each point to its
nearest neighbor

Weight of minimum perfect Matching

How well the points cover each coordinate

d

max p;
z pES Pi
i=1

0(1) 0(1)
[Tmair 91][White 91]
[Ravi et al 94]

0(1) 0(1)
[Hassin et al 97]
0(1) 0(1)
[Halldorsson et al 99]
0(1) 0(1)
[Halldorsson et al 99]
o(1) 0(1)

[Chandra&Halldorsson 01]

O(logk) O(logk)
[Chandra&Halldorsson 01]

O(logk) O(logk)
[Chandra&Halldorsson 01]

0(1) No Composable
[Feige 98] Coreset of Poly size
in k with app. factor
vk

log k



Review of Offline Algorithms

 We have a set of n point P

e Goal: find a subset S of size k which
maximizes the diversity
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— Choose an arbitrary point
— Repeat k-1 times
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The Greedy Algorithm

e Used for minimum-pairwise distance
e Greedy Algorithm [Ravi, Rosenkrantz,

Tayi] [Gonzales]
— Choose an arbitrary point

— Repeat k-1 times
e Add the point whose minimum distance to

the currently chosen points is maximized

e Remote-edge: computes a 2-
approximate set
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Local Search Algorithm

e Used for sum of pairwise distances
e Algorithm [Abbasi, Mirrokni, Thakur] ®
— Initialize S with an arbitrary set of
k points which contains the two
farthest points
— While there exists a swap that improves

diversity by a factor of (1 + %)
» Perform the swap
e For Remote-Clique

— Number of rounds: log{“g}kz = 0(glogk)

— Approximation factor is constant.



Composable Core-sets

e Greedy Algorithm Computes a 3-composable core-set for
minimum pairwise distance

e Local Search Algorithm Computes a constant factor
composable core-set for sum of pairwise distances.
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Proof Idea

Let Py, -+, P, be the set of points , P = UP;

Si, -+, Sy, be their core-sets, S =US§; Goal: div,(S) = divi(P) / c
Let OPT = {o4, -, 0, } be the optimal solution Goal: divy(S) = div(OPT) I c
Let r be their maximum diversity , r = max div(S;) , Note: divi(S) = r

l

Case 1: one of S; has diversity as good as the optimum: r > 0(div(OPT))

Case 2: :r < 0(div(OPT))

. find a one-to-one mapping u from OPT = {04,:+,0,}t0S =S; U - U S, S.t.
dist(o;,u(0;)) < O(r)

. Replacing o; with u(o;) has still large diversity

. div({u(o;)}) is approximately as good as div({o;})

. The actual mapping u depends on the specific diversity measure we are considering.
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Maximum k-Coverage

A set of n points P in d-dimensional space
Each dimension corresponds to a feature.

Goal: choose a set of k points S in P which maximizes the total
coverage:

—  cov(S) = Zﬁﬂ} gleaé S;

Special Case hamming space:
A collection of n sets P
Over the universe U = {1, ..., d}

Goal: choose k sets S = {S4, ..., Si} in P whose union is
maximized.

K :
Theorem: for any a < log k and any constant § > 1, there is

no a-composable core-set of size kP
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Proof Idea

Build a set of instances Py, -+, Py ()
letU ={1,---,0(k*)}

« LetV; be subsetof size k of U
 P;is a collection of subsets of size

Vk from V;
e  P; has cardinality ( \/’%)
We show there exists Vy, -+, Vp (k) such that
—  V:\ V; has size vk
— V;\'V; and V; \ V; are disjoint for i + j

e Using k sets everything in U V; can be covered,
that is 0(k3/?) elements.

e Using core-sets only |V;| + klogk = O(klogk)
can be covered
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Conclusion

Applications of composable core-sets

We showed construction of composable core-sets for a
wide range of diversity measures

We showed non existence of core-sets of polynomial
size in k for maximum coverage

Open Problems
— Are there any other applications of composable core-sets?

— Is there a general characterization of measures for which
composable core-sets exist?

— Better approximation factors?



Thank Youl

Questions?
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