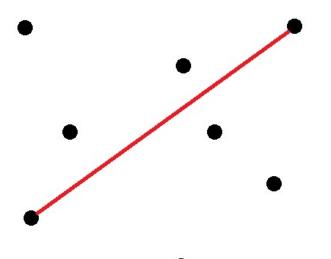
Composable Core-sets for Diversity and Coverage Maximization

Piotr Indyk (MIT) **Sepideh Mahabadi (MIT)** Mohammad Mahdian (Google) Vahab S. Mirrokni (Google)

• Setup

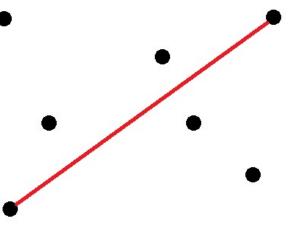
- Set of n points P in d-dimensional space
- Optimize a function f



• Setup

- Set of n points P in d-dimensional space
- Optimize a function f
- *c*-Core-set: Small subset of points S ⊂ P which suffices to *c*-approximate the optimal solution

• Maximization:
$$\frac{f_{opt}(P)}{c} \le f_{opt}(S) \le f_{opt}(P)$$



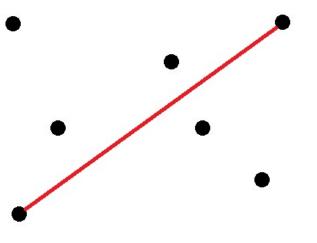
• Setup

- Set of n points P in d-dimensional space
- Optimize a function f
- *c*-Core-set: Small subset of points S ⊂ P which suffices to *c*-approximate the optimal solution

• Maximization:
$$\frac{f_{opt}(P)}{c} \le f_{opt}(S) \le f_{opt}(P)$$

• Example

 Optimization Function: Distance of the two farthest points

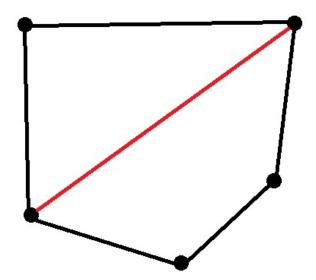


• Setup

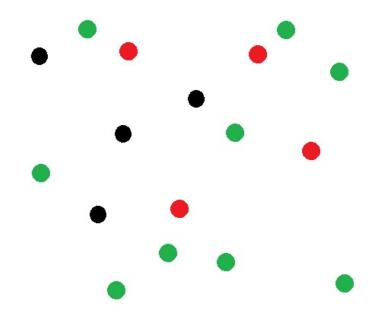
- Set of n points P in d-dimensional space
- Optimize a function f
- *c*-Core-set: Small subset of points S ⊂ P which suffices to *c*-approximate the optimal solution

• Maximization:
$$\frac{f_{opt}(P)}{c} \le f_{opt}(S) \le f_{opt}(P)$$

- Example
 - Optimization Function: Distance of the two farthest points
 - 1-Core-set: Points on the convex hull.



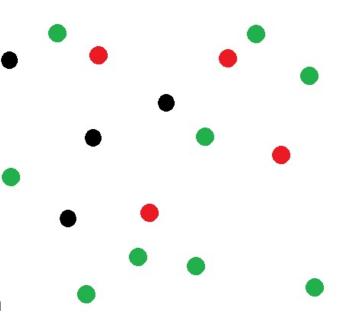
- Setup
 - *P*₁, *P*₂, ..., *P*_m are set of points in *d*-dimensional space
 - Optimize a function *f* over their union *P*.



• Setup

- P_1, P_2, \dots, P_m are set of points in *d*-dimensional space
- Optimize a function f over their union P.
- *c***-Composable Core-sets:** Subsets of points $S_1 \subset P_1, S_2 \subset P_2, ..., S_m \subset P_m$ points such that the solution of the union of the core-sets approximates the solution of the point sets.
 - Maximization :

 $\frac{1}{c}f_{opt}(P_1 \cup \dots \cup P_m) \le f_{opt}(S_1 \cup \dots \cup S_m) \le f_{opt}(P_1 \cup \dots \cup P_m)$



• Setup

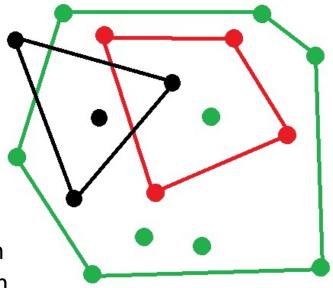
- P_1, P_2, \dots, P_m are set of points in d-dimensional space
- Optimize a function f over their union P.
- *c*-Composable Core-sets: Subsets of

points $S_1 \subset P_1$, $S_2 \subset P_2$, ..., $S_m \subset P_m$ points such that the solution of the union of the core-sets approximates the solution of the point sets.

• Maximization :

 $\frac{1}{c}f_{opt}(P_1 \cup \dots \cup P_m) \le f_{opt}(S_1 \cup \dots \cup S_m) \le f_{opt}(P_1 \cup \dots \cup P_m)$

• **Example:** two farthest points



• Setup

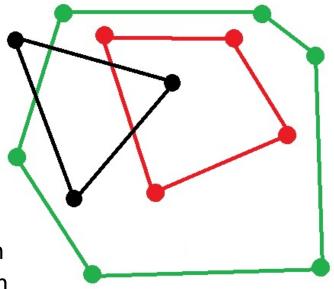
- P_1, P_2, \dots, P_m are set of points in d-dimensional space
- Optimize a function f over their union P.
- *c*-Composable Core-sets: Subsets of

points $S_1 \subset P_1$, $S_2 \subset P_2$, ..., $S_m \subset P_m$ points such that the solution of the union of the core-sets approximates the solution of the point sets.

• Maximization :

 $\frac{1}{c}f_{opt}(P_1 \cup \dots \cup P_m) \le f_{opt}(S_1 \cup \dots \cup S_m) \le f_{opt}(P_1 \cup \dots \cup P_m)$

• **Example:** two farthest points



• Setup

- P_1, P_2, \dots, P_m are set of points in d-dimensional space
- Optimize a function f over their union P.
- *c*-Composable Core-sets: Subsets of points S₁ ⊂ P₁, S₂ ⊂ P₂, ..., S_m ⊂ P_m points such that the solution of the union of the core-sets approximates the solution of the point sets.
 - Maximization :

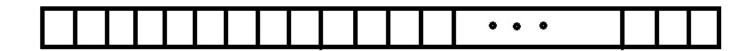
 $\frac{1}{c}f_{opt}(P_1 \cup \dots \cup P_m) \le f_{opt}(S_1 \cup \dots \cup S_m) \le f_{opt}(P_1 \cup \dots \cup P_m)$

• **Example:** two farthest points

Applications – Streaming Computation

• Streaming Computation:

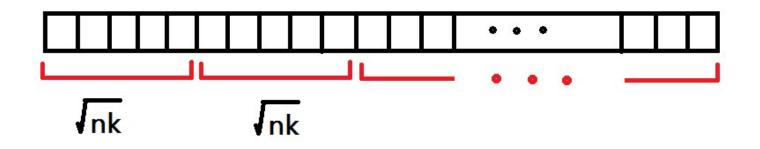
- Processing sequence of n data elements "on the fly"
- limited Storage



Applications – Streaming Computation

• Streaming Computation:

- Processing sequence of n data elements "on the fly"
- limited Storage
- *c*-Composable Core-set of size *k*
 - Chunks of size \sqrt{nk} , thus number of chunks = $\sqrt{n/k}$



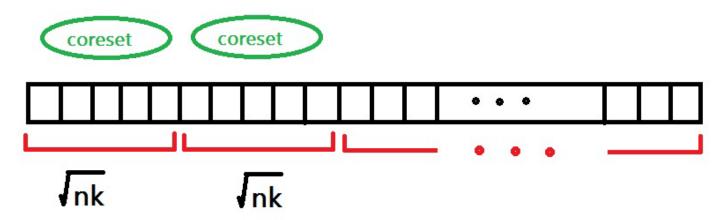
Applications – Streaming Computation

• Streaming Computation:

- Processing sequence of n data elements "on the fly"
- limited Storage

• *c*-Composable Core-set of size *k*

- Chunks of size \sqrt{nk} , thus number of chunks = $\sqrt{n/k}$
- Core-set for each chunk
- Total Space: $k\sqrt{n/k} + \sqrt{nk} = O(\sqrt{nk})$
- Approximation Factor: *c*



Applications – Distributed Systems

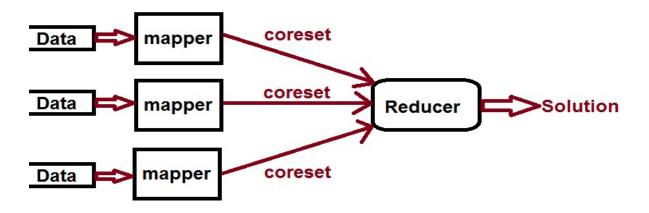
- Streaming Computation
- Distributed System:
 - Each machine holds a block of data.
 - A composable core-set is computed and sent to the server

Applications – Distributed Systems

- Streaming Computation
- Distributed System:
 - Each machine holds a block of data.
 - A composable core-set is computed and sent to the server

• Map-Reduce Model:

- One round of Map-Reduce
- $\sqrt{n/k}$ mappers each getting \sqrt{nk} points
- Mapper computes a composable core-set of size k
- Will be passed to a single reducer



- Streaming Computation
- Distributed System
- Similarity Search: Small output size

-			
jaguar			

About 350,000,000 results (0.27 seconds)

Jaguar USA - Jaguar Cars 🛱

www.jaguar.com/us/en/

5+ items – Skip to main contents. Skip to footer. Back to Jaguar homepage ... How Alive Are You Join a new generation of Jaguar. Take the test and ... XF | BE MOVED EVERYDAY A combination of luxury and performance you ... \[\frac{1}{2} XJ - XF - Jaguar's Racing Heart - Pre-Owned \]

Jaguar - Wikipedia, the free encyclopedia 📽

en.wikipedia.org/wiki/Jaguar The jaguar is a big cat, a feline in the Panthera genus, and is the only Panthera species found in the Americas. The jaguar is the third-largest feline after the tiger ... → Jaguar Cars - Jaguar (disambiguation) - Jacksonville Jaguars - Jaguarundi

Jaguar Cars - Wikipedia, the free encyclopedia 📽 en.wikipedia.org/wiki/Jaguar_Cars

Jaguar Cars Ltd, known simply as Jaguar is a British luxury and sports car manufacturer, headquartered in Whitley, Coventry, England. It is part of the Jaguar ...

- Streaming Computation
- Distributed System
- Similarity Search: Small output size
- Good to have result from each cluster: relevant and diverse



About 350,000,000 results (0.27 seconds)

Jaguar USA - Jaguar Cars 🛱

www.jaguar.com/us/en/

5+ items – Skip to main contents. Skip to footer. Back to Jaguar homepage ... How Alive Are You Join a new generation of Jaguar. Take the test and ... XF | BE MOVED EVERYDAY A combination of luxury and performance you ... \[\frac{1}{2} XJ - XF - Jaguar's Racing Heart - Pre-Owned \]

Jaguar - Wikipedia, the free encyclopedia 📽

en.wikipedia.org/wiki/Jaguar The jaguar is a big cat, a feline in the Panthera genus, and is the only Panthera species found in the Americas. The jaguar is the third-largest feline after the tiger ...

→ Jaguar Cars - Jaguar (disambiguation) - Jacksonville Jaguars - Jaguarundi

Jaguar Cars - Wikipedia, the free encyclopedia 📽 en.wikipedia.org/wiki/Jaguar_Cars

Jaguar Cars Ltd, known simply as Jaguar is a British luxury and sports car manufacturer, headquartered in Whitley, Coventry, England. It is part of the Jaguar ...

- Streaming Computation
- Distributed System
- Similarity Search: Small output size
- Good to have result from each cluster: relevant and diverse
- Diverse Near Neighbor Problem
 [Abbar, Amer-Yahia, Indyk, Mahabadi
 WWW'13] [Abbar, Amer-Yahia, Indyk, Mahabadi, Varadarajan, SoCG'13]

Jaguar USA - Jaguar Cars 🛱

www.jaguar.com/us/en/

5+ items – Skip to main contents. Skip to footer. Back to Jaguar homepage ... How Alive Are You Join a new generation of Jaguar. Take the test and ... XF | BE MOVED EVERYDAY A combination of luxury and performance you ... +> XJ - XF - Jaguar's Racing Heart - Pre-Owned

Jaguar - Wikipedia, the free encyclopedia 📽

en.wikipedia.org/wiki/Jaguar

The jaguar is a big cat, a feline in the Panthera genus, and is the only Panthera species found in the Americas. The jaguar is the third-largest feline after the tiger ... → Jaguar Cars - Jaguar (disambiguation) - Jacksonville Jaguars - Jaguarundi

Jaguar Cars - Wikipedia, the free encyclopedia 📽

Jaguar Cars Ltd, known simply as Jaguar is a British luxury and sports car manufacturer, headquartered in Whitley, Coventry, England. It is part of the Jaguar ...

- Streaming Computation
- Distributed System
- Similarity Search: Small output size
- Good to have result from each cluster: relevant and diverse
- Diverse Near Neighbor Problem
 [Abbar, Amer-Yahia, Indyk, Mahabadi
 WWW'13] [Abbar, Amer-Yahia, Indyk,
 Mahabadi, Varadarajan, SoCG'13]
 - uses Locality Sensitive Hashing (LSH) and Composable Coresets techniques.

Jaguar USA - Jaguar Cars 📽

www.jaguar.com/us/en/

5+ items – Skip to main contents. Skip to footer. Back to Jaguar homepage ... How Alive Are You Join a new generation of Jaguar. Take the test and ... XF | BE MOVED EVERYDAY A combination of luxury and performance you ... +> XJ - XF - Jaguar's Racing Heart - Pre-Owned

Jaguar - Wikipedia, the free encyclopedia

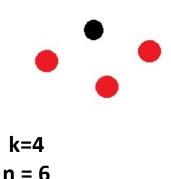
The jaguar is a big cat, a feline in the Panthera genus, and is the only Panthera species found in the Americas. The jaguar is the third-largest feline after the tiger ...

Jaguar Cars - Wikipedia, the free encyclopedia

Jaguar Cars Ltd, known simply as Jaguar is a British luxury and sports car manufacturer, headquartered in Whitley, Coventry, England. It is part of the Jaguar ...

- A set of *n* points *P* in metric space (Δ, *dist*)
- Optimization Problem:
 - Find a subset of k points S which maximizes Diversity

- A set of n points P in metric space
 (Δ, dist)
- Optimization Problem:
 - Find a subset of k points S which maximizes Diversity
- Diversity:
 - Minimum pairwise distance (Remote Edge)



- A set of n points P in metric space
 (Δ, dist)
- Optimization Problem:
 - Find a subset of k points S which maximizes Diversity
- Diversity:
 - Minimum pairwise distance (Remote Edge)
 - Sum of Pairwise distances (Remote Clique)

k=4 n = 6

- A set of n points P in metric space
 (Δ, dist)
- Optimization Problem:
 - Find a subset of k points S which maximizes Diversity
- Diversity:
 - Minimum pairwise distance (Remote Edge)
 - Sum of Pairwise distances (Remote Clique)
- Long list of variants [Chandra and Halldorsson '01]

k=4 n = 6

Diversity Functions

Diversity function over a set S of k point	Description
Remote-edge	Minimum Pairwise Distance: $\min_{\{p,q\in S\}} dist(p,q)$
Remote-clique	Sum of Pairwise Distances : $\sum_{\{p,q\in S\}} dist(p,q)$
Remote-tree	Weight of Minimum Spanning Tree (MST) of the set S
Remote-cycle	Weight of minimum Traveling Salesman Tour (TSP) of the set S
Remote-star	Weight of minimum star: $\min_{\{p \in S\}} \sum_{\{q \in S\}} dist(p,q)$
Remote-Pseudoforest	Sum of the distance of each point to its nearest neighbor $\sum_{\{p \in S\}} \min_{\{q \in S\}} dist(p,q)$
Remote-Matching	Weight of minimum perfect Matching of the set S
Max-Coverage	How well the points cover each coordinate $\sum_{i=1}^d \max_{p \in S} p_i$

Our Results

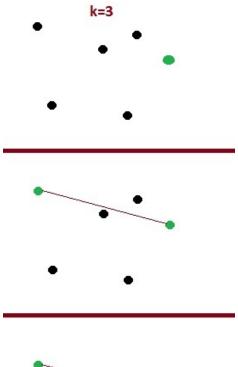
Diversity function		Offline ApproxFactor	Composable Coreset Approx factor [Our Results]
Remote-edge	Minimum Pairwise Distance	<i>0</i> (1) [Tmair 91][White 91] [Ravi et al 94]	0 (1)
Remote-clique	Sum of Pairwise Distances	0(1) [Hassin et al 97]	0 (1)
Remote-tree	Weight of MST	<i>O</i> (1) [Halldorsson et al 99]	0 (1)
Remote-cycle	Weight of minimum TSP	<i>0</i> (1) [Halldorsson et al 99]	0 (1)
Remote-star	Weight of minimum star	<i>O</i> (1) [Chandra&Halldorsson 01]	0 (1)
Remote-Pseudoforest	Sum of the distance of each point to its nearest neighbor	$O(\log k)$ [Chandra&Halldorsson 01]	$O(\log k)$
Remote-Matching	Weight of minimum perfect Matching	O(log k) [Chandra&Halldorsson 01]	$O(\log k)$
Max-Coverage	How well the points cover each coordinate $\sum_{i=1}^d \max_{p \in \mathcal{S}} p_i$	0(1) [Feige 98]	No Composable Coreset of Poly size in k with app. factor $\frac{\sqrt{k}}{\log k}$

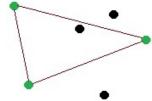
Review of Offline Algorithms

- We have a set of *n* point *P*
- Goal: find a subset *S* of size *k* which maximizes the diversity

The Greedy Algorithm

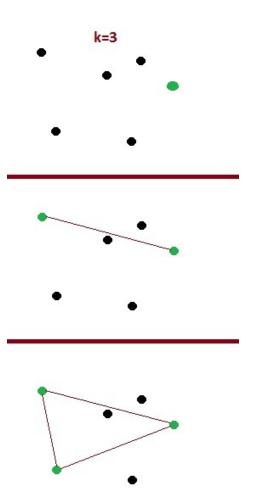
• Used for minimum-pairwise distance





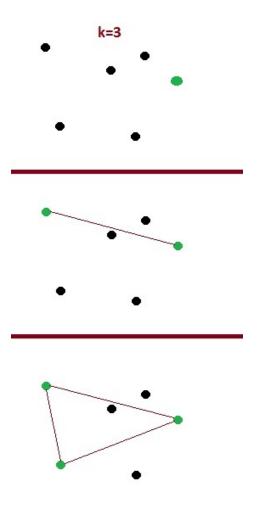
The Greedy Algorithm

- Used for minimum-pairwise distance
- Greedy Algorithm [Ravi, Rosenkrantz, Tayi] [Gonzales]
 - Choose an arbitrary point
 - Repeat k-1 times
 - Add the point whose minimum distance to the currently chosen points is maximized



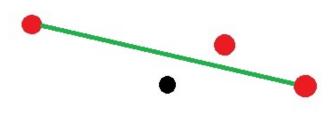
The Greedy Algorithm

- Used for minimum-pairwise distance
- Greedy Algorithm [Ravi, Rosenkrantz, Tayi] [Gonzales]
 - Choose an arbitrary point
 - Repeat k-1 times
 - Add the point whose minimum distance to the currently chosen points is maximized
- Remote-edge: computes a 2approximate set

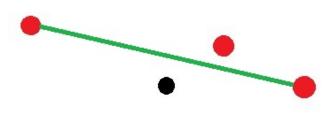


• Used for sum of pairwise distances

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of
 k points which contains the two
 farthest points



- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of
 k points which contains the two
 farthest points
 - While there exists a swap that improves diversity by a factor of $\left(1 + \frac{\epsilon}{n}\right)$



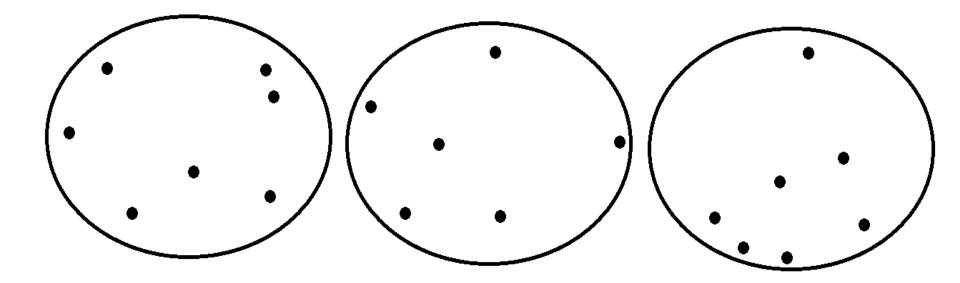
- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of
 k points which contains the two
 farthest points
 - While there exists a swap that improves diversity by a factor of $\left(1 + \frac{\epsilon}{n}\right)$
 - » Perform the swap

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of
 k points which contains the two
 farthest points
 - While there exists a swap that improves diversity by a factor of $\left(1 + \frac{\epsilon}{n}\right)$
 - » Perform the swap

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of
 k points which contains the two
 farthest points
 - While there exists a swap that improves diversity by a factor of $\left(1 + \frac{\epsilon}{n}\right)$
 - » Perform the swap
- For Remote-Clique
 - Number of rounds: $\log_{\left\{1+\frac{\epsilon}{n}\right\}} k^2 = O(\frac{n}{\epsilon} \log k)$
 - Approximation factor is constant.

- Greedy Algorithm Computes a 3-composable core-set for minimum pairwise distance
- Local Search Algorithm Computes a constant factor composable core-set for sum of pairwise distances.

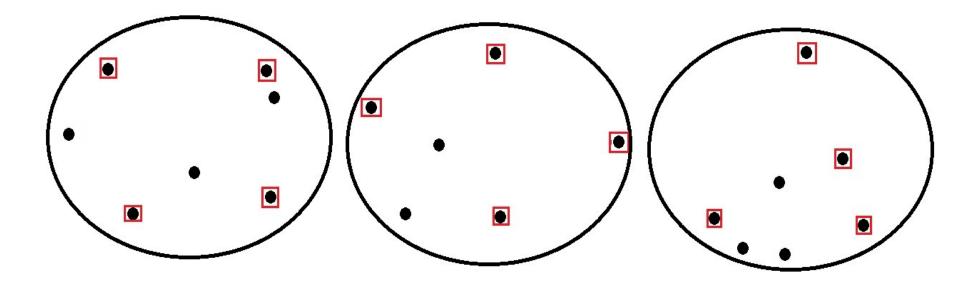
Let P_1, \dots, P_m be the set of points , $P = \bigcup P_i$



Let P_1, \dots, P_m be the set of points, $P = \bigcup P_i$

 S_1, \dots, S_m be their core-sets, $S = \bigcup S_i$

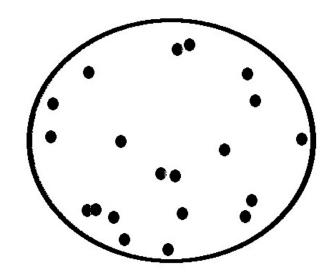
Goal: $div_k(S) \ge div_k(P) / c$



Let P_1, \dots, P_m be the set of points, $P = \bigcup P_i$

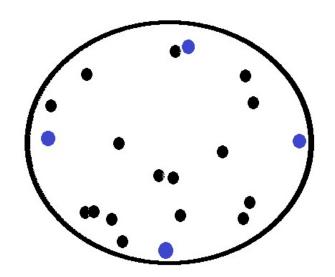
 S_1, \dots, S_m be their core-sets, $S = \bigcup S_i$

Goal: $div_k(S) \ge div_k(P) / c$



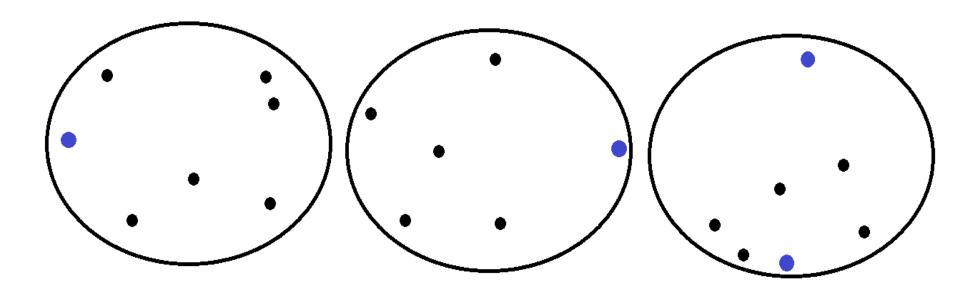
Let P_1, \dots, P_m be the set of points , $P = \bigcup P_i$ S_1, \dots, S_m be their core-sets, $S = \bigcup S_i$ Let $OPT = \{o_1, \dots, o_k\}$ be the optimal solution

Goal: $div_k(S) \ge div_k(P) / c$ **Goal:** $div_k(S) \ge div(OPT) / c$



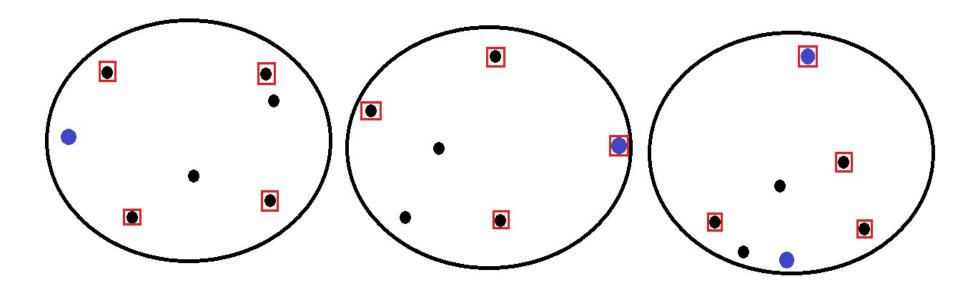
Let P_1, \dots, P_m be the set of points , $P = \bigcup P_i$ S_1, \dots, S_m be their core-sets, $S = \bigcup S_i$ Let $OPT = \{o_1, \dots, o_k\}$ be the optimal solution

Goal: $div_k(S) \ge div_k(P) / c$ **Goal:** $div_k(S) \ge div(OPT) / c$



Let P_1, \dots, P_m be the set of points, $P = \bigcup P_i$ S_1, \dots, S_m be their core-sets, $S = \bigcup S_i$ Let $OPT = \{o_1, \dots, o_k\}$ be the optimal solution Let r be their maximum diversity, $r = \max_i div(S_i)$,

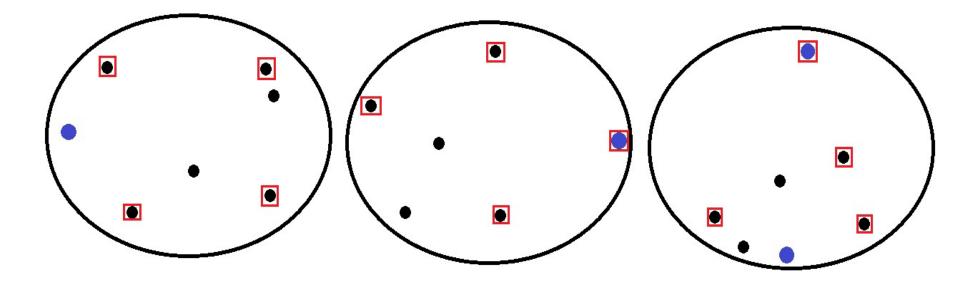
Goal: $div_k(S) \ge div_k(P) / c$ **Goal:** $div_k(S) \ge div(OPT) / c$ Note: $div_k(S) \ge r$



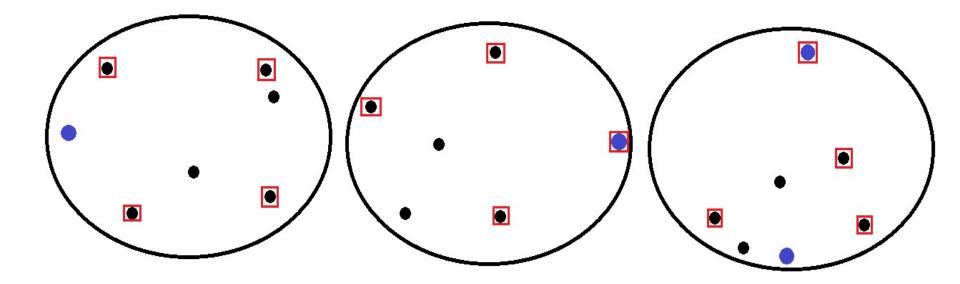
Let P_1, \dots, P_m be the set of points , $P = \bigcup P_i$ S_1, \dots, S_m be their core-sets, $S = \bigcup S_i$ Let $OPT = \{o_1, \dots, o_k\}$ be the optimal solution Let r be their maximum diversity , $r = \max_i div(S_i)$,

Goal: $div_k(S) \ge div_k(P) / c$ **Goal:** $div_k(S) \ge div(OPT) / c$ Note: $div_k(S) \ge r$

Case 1: one of S_i has diversity as good as the optimum: $r \ge O(div(OPT))$

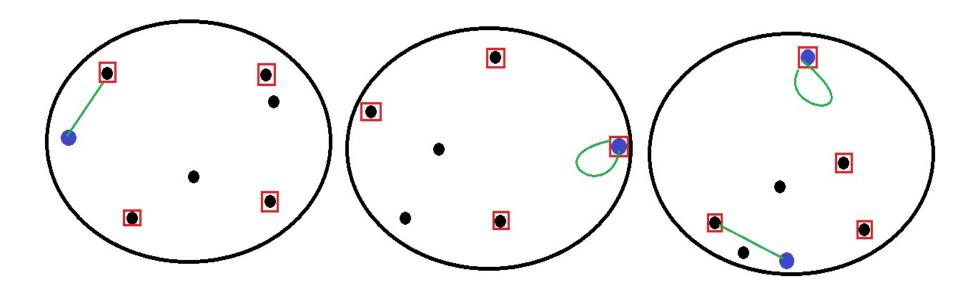


Let P_1, \dots, P_m be the set of points , $P = \bigcup P_i$ S_1, \dots, S_m be their core-sets, $S = \bigcup S_i$ Let $OPT = \{o_1, \dots, o_k\}$ be the optimal solution Let r be their maximum diversity , $r = \max_i div(S_i)$, $Note: div_k(S) \ge div(OPT) / c$ **Case 1:** one of S_i has diversity as good as the optimum: $r \ge O(div(OPT))$ **Case 2:** $: r \le O(div(OPT))$



Let P_1, \dots, P_m be the set of points , $P = \bigcup P_i$ S_1, \dots, S_m be their core-sets, $S = \bigcup S_i$ Let $OPT = \{o_1, \dots, o_k\}$ be the optimal solution Let r be their maximum diversity , $r = \max_i div(S_i)$, Case 1: one of S_i has diversity as good as the optimum: $r \ge O(div(OPT))$ Case 2: : $r \le O(div(OPT))$

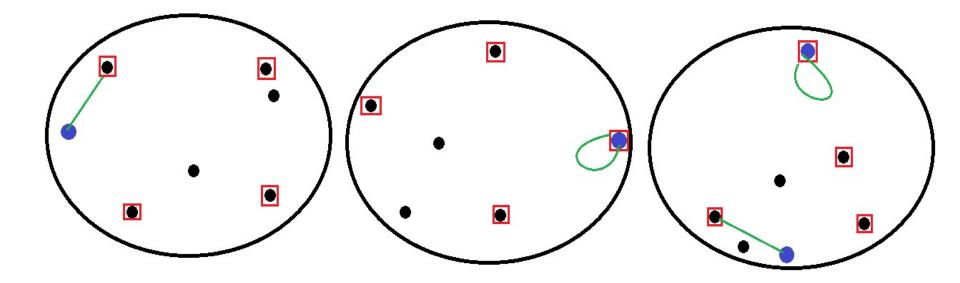
• find a **one-to-one** mapping μ from $OPT = \{o_1, \dots, o_k\}$ to $S = S_1 \cup \dots \cup S_m$ s.t. $dist(o_i, \mu(o_i)) \leq \mathbf{0}(r)$



Let P_1, \dots, P_m be the set of points, $P = \bigcup P_i$ S_1, \dots, S_m be their core-sets, $S = \bigcup S_i$ Let $OPT = \{o_1, \dots, o_k\}$ be the optimal solution Let r be their maximum diversity, $r = \max_i div(S_i)$, **Case 1:** one of S_i has diversity as good as the optimum: $r \ge O(div(OPT))$

Case 1: one of S_i has diversity as good as the optimum: $r \ge O(div(OPT)$ **Case 2:** $r \le O(div(OPT))$

- find a **one-to-one** mapping μ from $OPT = \{o_1, \dots, o_k\}$ to $S = S_1 \cup \dots \cup S_m$ s.t. $dist(o_i, \mu(o_i)) \leq \mathbf{0}(r)$
- Replacing o_i with $\mu(o_i)$ has still large diversity
- $div(\{\mu(o_i)\})$ is approximately as good as $div(\{o_i\})$



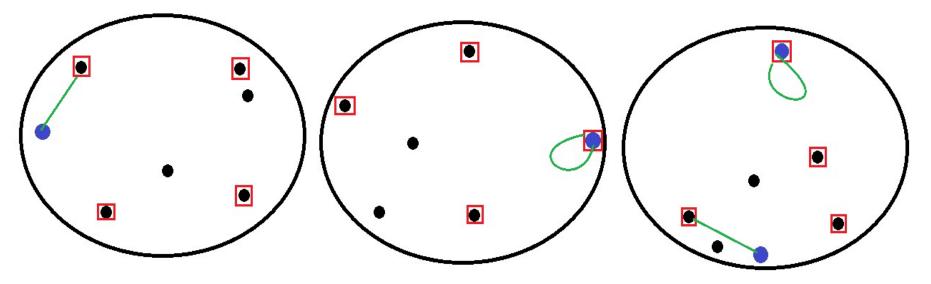
Let P_1, \dots, P_m be the set of points, $P = \bigcup P_i$ S_1, \dots, S_m be their core-sets, $S = \bigcup S_i$ Let $OPT = \{o_1, \dots, o_k\}$ be the optimal solution Note: $\operatorname{div}_k(S) \ge r$ Let *r* be their maximum diversity, $r = \max div(S_i)$,

Goal: $div_k(S) \ge div_k(P) / c$ **Goal:** $div_k(S) \ge div(OPT) / c$

Case 1: one of S_i has diversity as good as the optimum: $r \ge O(div(OPT))$

Case 2: $r \leq O(div(OPT))$

- find a **one-to-one** mapping μ from $OPT = \{o_1, \dots, o_k\}$ to $S = S_1 \cup \dots \cup S_m$ s.t. $dist(o_i, \mu(o_i)) \leq \boldsymbol{O}(r)$
- Replacing o_i with $\mu(o_i)$ has still large diversity
- $div(\{\mu(o_i)\})$ is approximately as good as $div(\{o_i\})$
- The actual mapping μ depends on the specific diversity measure we are considering.



Maximum k-Coverage

- A set of *n* points *P* in *d*-dimensional space
- Each dimension corresponds to a feature.
- Goal: choose a set of k points S in P which maximizes the total coverage:

$$- \operatorname{cov}(S) = \sum_{\{i=1\}}^{d} \max_{\{s \in S\}} s_i$$

Maximum k-Coverage

- A set of *n* points *P* in *d*-dimensional space
- Each dimension corresponds to a feature.
- Goal: choose a set of k points S in P which maximizes the total coverage:

$$- \operatorname{cov}(S) = \sum_{\{i=1\}}^d \max_{\{s \in S\}} s_i$$

- Special Case hamming space:
- A collection of *n* sets *P*
- Over the universe $U = \{1, \dots, d\}$
- Goal: choose k sets $S = \{S_1, ..., S_k\}$ in P whose union is maximized.

Maximum k-Coverage

- A set of *n* points *P* in *d*-dimensional space
- Each dimension corresponds to a feature.
- Goal: choose a set of k points S in P which maximizes the total coverage:

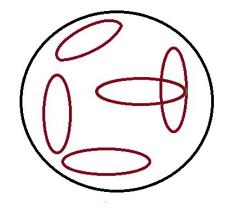
$$- \operatorname{cov}(S) = \sum_{\{i=1\}}^d \max_{\{s \in S\}} s_i$$

- Special Case hamming space:
- A collection of *n* sets *P*
- Over the universe $U = \{1, \dots, d\}$
- Goal: choose k sets $S = \{S_1, \dots, S_k\}$ in P whose union is maximized.
- **Theorem**: for any $\alpha < \frac{\sqrt{k}}{\log k}$ and any constant $\beta > 1$, there is no α -composable core-set of size k^{β}

Build a set of instances $P_1, \dots, P_{O(k)}$ let $U = \{1, \dots, O(k^4)\}$

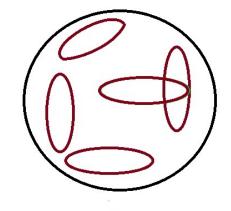
Build a set of instances $P_1, \dots, P_{O(k)}$ let $U = \{1, \dots, O(k^4)\}$

• Let V_i be subset of size k of U



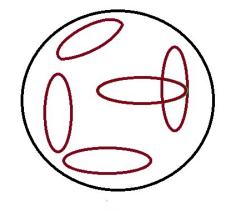
Build a set of instances $P_1, \dots, P_{O(k)}$ let $U = \{1, \dots, O(k^4)\}$

- Let V_i be subset of size k of U
- P_i is a collection of subsets of size \sqrt{k} from V_i



Build a set of instances $P_1, \dots, P_{O(k)}$ let $U = \{1, \dots, O(k^4)\}$

- Let V_i be subset of size k of U
- P_i is a collection of subsets of size \sqrt{k} from V_i
- P_i has cardinality $\binom{k}{\sqrt{k}}$

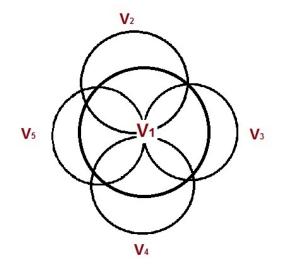


Build a set of instances $P_1, \dots, P_{O(k)}$ let $U = \{1, \dots, O(k^4)\}$

- Let V_i be subset of size k of U
- P_i is a collection of subsets of size \sqrt{k} from V_i
- P_i has cardinality $\binom{k}{\sqrt{k}}$

We show there exists $V_1, \dots, V_{O(k)}$ such that

- $V_i \setminus V_1$ has size \sqrt{k}
- $V_i \setminus V_1$ and $V_j \setminus V_1$ are disjoint for $i \neq j$

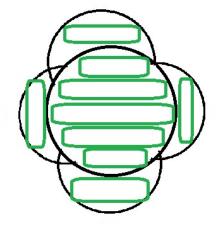


Build a set of instances $P_1, \dots, P_{O(k)}$ let $U = \{1, \dots, O(k^4)\}$

- Let V_i be subset of size k of U
- P_i is a collection of subsets of size \sqrt{k} from V_i
- P_i has cardinality $\binom{k}{\sqrt{k}}$

We show there exists $V_1, \dots, V_{O(k)}$ such that

- $V_i \setminus V_1$ has size \sqrt{k}
- $V_i \setminus V_1$ and $V_j \setminus V_1$ are disjoint for $i \neq j$
- Using k sets everything in $\cup V_i$ can be covered, that is $O(k^{3/2})$ elements.



Build a set of instances $P_1, \dots, P_{O(k)}$ let $U = \{1, \dots, O(k^4)\}$

- Let V_i be subset of size k of U
- P_i is a collection of subsets of size \sqrt{k} from V_i
- P_i has cardinality $\binom{k}{\sqrt{k}}$

We show there exists $V_1, \dots, V_{O(k)}$ such that

- $V_i \setminus V_1$ has size \sqrt{k}

- Using k sets everything in $\cup V_i$ can be covered, that is $O(k^{3/2})$ elements.
- Using core-sets only |V₁| + k log k = O(k log k) can be covered

• Applications of composable core-sets

- Applications of composable core-sets
- We showed construction of composable core-sets for a wide range of diversity measures

- Applications of composable core-sets
- We showed construction of composable core-sets for a wide range of diversity measures
- We showed non existence of core-sets of polynomial size in k for maximum coverage

- Applications of composable core-sets
- We showed construction of composable core-sets for a wide range of diversity measures
- We showed non existence of core-sets of polynomial size in k for maximum coverage

Open Problems

— Are there any other applications of composable core-sets?

- Applications of composable core-sets
- We showed construction of composable core-sets for a wide range of diversity measures
- We showed non existence of core-sets of polynomial size in k for maximum coverage

Open Problems

- Are there any other applications of composable core-sets?
- Is there a general characterization of measures for which composable core-sets exist?

- Applications of composable core-sets
- We showed construction of composable core-sets for a wide range of diversity measures
- We showed non existence of core-sets of polynomial size in k for maximum coverage

Open Problems

- Are there any other applications of composable core-sets?
- Is there a general characterization of measures for which composable core-sets exist?
- Better approximation factors?

Thank You!

Questions?